Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies
نویسندگان
چکیده
Citation: Averesch NJH and Krömer JO (2018) Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies. Front. Bioeng. Biotechnol. 6:32. doi: 10.3389/fbioe.2018.00032 metabolic engineering of the Shikimate Pathway for Production of aromatics and Derived compounds—Present and Future Strain construction Strategies
منابع مشابه
Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli
Shikimate is an important intermediate in the aromatic amino acid pathway, which can be used as a promising building block for the synthesis of biological compounds, such as neuraminidase inhibitor Oseltamivir (Tamiflu®). Compared with traditional methods, microbial production of shikimate has the advantages of environmental friendliness, low cost, feed stock renewability, and product selectivi...
متن کاملEstablishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuabl...
متن کاملDynamic Regulation of Bacterial Metabolic Pathways using Autonomous , Pathway - Independent Control Strategies
Metabolic engineering efforts have so far focused on strain optimization through careful metabolic modeling and tinkering with host genomes, through gene knockouts or knockins, to direct flux in desired channels. These efforts have borne fruit with the development of large manufacturing processes for numerous chemicals. The next challenge for metabolic engineering, however, lies in tackling iss...
متن کاملGenetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine
BACKGROUND The biocontrol strain Pseudomonas chlororaphis GP72 isolated from the green pepper rhizosphere synthesizes three antifungal phenazine compounds, 2-Hydroxyphenazine (2-OH-PHZ), 2-hydroxy-phenazine-1-carboxylic acid (2-OH-PCA) and phenazine-1-carboxylic acid (PCA). PCA has been a commercialized antifungal pesticide registered as "Shenqinmycin" in China since 2011. It is found that 2-OH...
متن کاملEngineering a bzd cassette for the anaerobic bioconversion of aromatic compounds
Microorganisms able to degrade aromatic contaminants constitute potential valuable biocatalysts to deal with a significant reusable carbon fraction suitable for eco-efficient valorization processes. Metabolic engineering of anaerobic pathways for degradation and recycling of aromatic compounds is an almost unexplored field. In this work, we present the construction of a functional bzd cassette ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2018